The evolution of starburst galaxies

Vivienne Wild - University of St Andrews

Jakob Walcher (AIP), Peter Johansson (Helsinki) Nicole Nesvadba (IAS), Matt Lehnert (IAP) Angela Mortier, Elisabeta da Cunha (MPIA) Tim Heckman (JHU), Stephane Charlot (IAP)

Taxonomy

- What is a starburst galaxy?
- Post-starburst / E+A / K+A galaxies
- Defining an evolutionary sequence

(post)-starburst - AGN connection
Evolution of SFR, gas mass, dust properties
Build-up of the red sequence and redshift evolution

Extreme events

- Convert ~all ISM into stars at ~100% efficiency in ~10⁸yrs
- Scale ~few kpc = circumnuclear (at least in local Universe)

Extreme events

- Convert ~all ISM into stars at ~100% efficiency in ~10⁸yrs
- Scale ~few kpc = circumnuclear (at least in local Universe)

Definition/selection varies:

- IR bright
 - Iow-z ULIRGS are extreme examples
- Birth rate or SFR/M* (specific SFR)
 - time to build stellar mass at current SFR << t_H
- Intensity (surface brightness)
 - Maximum close to 20 M_{sol}/yr/kpc²
- Causality
 - consume all gas in ~one dynamical time

Extreme events

- Convert ~all ISM into stars at ~100% efficiency in ~10⁸yrs
- Scale ~few kpc = circumnuclear (at least in local Universe)
- Definition/selection varies:
 - IR bright
 - Iow-z ULIRGS are extreme examples
 - Birth rate or SFR/M* (specific SFR)
 - time to build stellar mass at current SFR << t_H
 - Intensity (surface brightness)
 - Maximum close to 20 M_{sol}/yr/kpc²
 - Causality
 - consume all gas in ~one dynamical time

 Better physical motivation
 Difficult observables

- What is the dominant mode of star formation in galaxies?
 - Bursty or quiescent?
 - In bulges or in disks?

- What is the dominant mode of star formation in galaxies?
 - Bursty or quiescent?
 - In bulges or in disks?
- Does the dominant mode change with z?
 - How do galaxy bulges form/grow?
 - Bulges = black holes: relation to galaxy evolution?

- What is the dominant mode of star formation in galaxies?
 - Bursty or quiescent?
 - In bulges or in disks?
- Does the dominant mode change with z?
 - How do galaxy bulges form/grow?
 - Bulges = black holes: relation to galaxy evolution?
- Role of mergers in galaxy evolution?
 - How well do galaxies follow Dark Matter's hierarchical growth?

- What is the dominant mode of star formation in galaxies?
 - Bursty or quiescent?
 - In bulges or in disks?
- Does the dominant mode change with z?
 - How do galaxy bulges form/grow?
 - Bulges = black holes: relation to galaxy evolution?
- Role of mergers in galaxy evolution?
 - How well do galaxies follow Dark Matter's hierarchical growth?
- Physics of high mass star formation
 - Millions of OB stars
 - Outflows and self-regulation

SDSS DR7 Starforming galaxies

(Pacifici et al. 2011)

SDSS DR7 Starforming galaxies

(Pacifici et al. 2011)

✦ A starburst (for the purposes of this talk):

- Is an unsustainable star formation event
 - And therefore decays into a post-starburst phase
- Occurs "once-in-a-lifetime" of an average galaxy (or a few times)
- Adds significant (~10%) stellar mass to galaxy

Building stellar populations

- Galaxy spectrum = stellar spectra+IMF+SFH+ZH (x dust)
 - Invert to recover SFH
 - Light from some galaxies can be dominated by one type of star

Building stellar populations

- Galaxy spectrum = stellar spectra+IMF+SFH+ZH (x dust)
 - Invert to recover SFH
 - Light from some galaxies can be dominated by one type of star

Post-starburst galaxies

"colour is typical of Sb spirals but the integrated spectrum of an Sb spiral is completely incompatible with the spectra of the 3 objects"

"...consistent with an old population mixed with an equal blue luminosity of A-stars, which indicates a large burst of star formation 10⁹ years before the light left the galaxy"

Post-starburst galaxies

"compare with simulations to show that the galaxies are consistent with being the descendants of gas-rich major mergers"

"post-starburst galaxies could account for ~40% of the growth rate of the red sequence"

Post-starburst galaxies

"Similar to other massive galaxies at z~2 the galaxy is compact, with an effective radius of 2.1 ± 0.3kpc"

"the data can be fit with an extreme burst of ~5000 Mo/yr at z~2.2 (blue), or with a star formation rate of ~500 Mo/yr sustained over ~1 Gyr (orange)"

Post-starburst selection - traditional

Post-starburst selection - traditional

Problems:

- EQW emission/absorption combination = complicated physical selection function
- Ignores possibility for slow decay in SFR after starburst
- Impossible to study evolution of starburst -> post-starburst
- Excludes objects with AGN
 - and post-starbursts have higher probability of having an AGN (Wild et al. 2007, Yan et al. 2009)

- Parameterise shape of spectrum using spectral indices
- ✦ Plot distribution of indices for a *complete sample* of galaxies (e.g. mass limited)
- Utilise edges of distribution to extract additional "population" information

- Parameterise shape of spectrum using spectral indices
- ✦ Plot distribution of indices for a *complete sample* of galaxies (e.g. mass limited)
- Utilise edges of distribution to extract additional "population" information

- Parameterise shape of spectrum using spectral indices
- ✦ Plot distribution of indices for a *complete sample* of galaxies (e.g. mass limited)
- Utilise edges of distribution to extract additional "population" information

- Parameterise shape of spectrum using spectral indices
- ✦ Plot distribution of indices for a *complete sample* of galaxies (e.g. mass limited)
- Utilise edges of distribution to extract additional "population" information

- Parameterise shape of spectrum using spectral indices
- ✦ Plot distribution of indices for a *complete sample* of galaxies (e.g. mass limited)
- Utilise edges of distribution to extract additional "population" information

- Parameterise shape of spectrum using spectral indices
- ✦ Plot distribution of indices for a *complete sample* of galaxies (e.g. mass limited)
- Utilise edges of distribution to extract additional "population" information

Wild, Walcher, Johansson et al. 2009

Wild, Walcher, Johansson et al. 2009

Wild, Walcher, Johannson et al. 2009, MNRAS

 Conclusion 1: Gas rich spiral merger leads to remnants with strong Balmer absorption, before galaxy enters red sequence

- Conclusion 1: Gas rich spiral merger leads to remnants with strong Balmer absorption, before galaxy enters red sequence
- Conclusion 2: "AGN feedback" makes little difference to stellar population
 - Decay in SF caused by gas exhaustion + SNe feedback

- Conclusion 1: Gas rich spiral merger leads to remnants with strong Balmer absorption, before galaxy enters red sequence
- Conclusion 2: "AGN feedback" makes little difference to stellar population
 - Decay in SF caused by gas exhaustion + SNe feedback
- To detect PSBs observationally:
 - Initial decay timescale must be short: < 1e8 years
 - Detectable for ~1.5Gyr for strongest bursts
 - Detectable burst mass fraction >~5-10%

Starburst-AGN connection

Wild et al. 2010, MNRAS
Starburst-AGN connection

- 400 strongest starburst to post-starburst bulge-galaxies in local Universe
 - 0.01 < z < 0.07 (3" SDSS fibre => 0.6 4 kpc diameter)
 - Stellar surface mass density > 3 x 10^8 M $_{\odot}$ /kpc² (where majority of L[OIII]_{AGN} originates)
 - Complete sample to 600Myr: constant number per unit starburst age
 - Starburst stellar mass fractions ~10-20% (continuum fits and Ha luminosities agree)

Starburst-AGN connection

- 400 strongest starburst to post-starburst bulge-galaxies in local Universe
 - 0.01 < z < 0.07 (3" SDSS fibre => 0.6 4 kpc diameter)
 - Stellar surface mass density > 3 x 10^8 M $_{\odot}$ /kpc² (where majority of L[OIII]_{AGN} originates)
 - Complete sample to 600Myr: constant number per unit starburst age
 - Starburst stellar mass fractions ~10-20% (continuum fits and Ha luminosities agree)

Starburst-AGN connection

Stellar continuum -> age of the starburst

Emission lines -> black hole accretion (+ instantaneous SFR)

400 strongest starburst to post-starburst bulge-galaxies in local Universe

- 0.01 < z < 0.07 (3" SDSS fibre => 0.6 4 kpc diameter)
- Stellar surface mass density > 3 x 10^8 M $_{\odot}$ /kpc² (where majority of L[OIII]_{AGN} originates)
- Complete sample to 600Myr: constant number per unit starburst age
- Starburst stellar mass fractions ~10-20% (continuum fits and Ha luminosities agree)

Feedback from fast stellar ejecta prevents accretion??

Accretion efficiency: ~1% of low mass stellar ejecta

(see also Ciotti & Ostriker 07; Kauffmann & Heckman 09)

Method:

- Stellar continuum: complete sample of starburst -> poststarburst galaxies
- Nebular emission lines: black hole accretion rate

Method:

- Stellar continuum: complete sample of starburst -> poststarburst galaxies
- Nebular emission lines: black hole accretion rate

Results:

- Delay between onset of starburst and black hole accretion
- Too long for simple stellar ejecta hypothesis

Method:

- Stellar continuum: complete sample of starburst -> poststarburst galaxies
- Nebular emission lines: black hole accretion rate

Results:

- Delay between onset of starburst and black hole accretion
- Too long for simple stellar ejecta hypothesis

Conclusion??:

- Black holes grow through accretion of slow stellar ejecta
- Feedback from SNe prevents accretion early on
- Or, something to do with dynamical timescale for fueling
 - (Phil Hopkins 2012, MNRAS, 420, 8)

Decline of SFR after starburst

+ 3 phases:

- Peak ~ 50 Myr
- Slow decline ~ 350 Myr
- Rapid decline into late post-starburst phase

Decline of SFR after starburst

+ 3 phases:

- Peak ~ 50 Myr
- Slow decline ~ 350 Myr
- Rapid decline into late post-starburst phase

~0.3Gyr decline in agreement with:

✦ Gas consumption times from Kennicutt-Schmidt relation (Kennicutt 1998)

Resolved stellar populations of local dwarfs (McQuinn et al 2010)

Starbursts in close-pairs (Barton et al.
2000; Freedman Woods et al. 2010)

 Stellar surface mass densities of elliptical galaxies (Hopkins & Hernquist 2010)

Residual gas supplies

- No clear decline in global gas mass fraction
 - youngest starbursts slight enhancement in CO(2-1)/CO(1-0) : ISM heating
- SFR intensity decreases with time
 - Consistent with Schmidt law
 - SF efficiency decreases with time

Residual gas supplies

Work-in-progress!!

- No clear decline in global gas mass fraction
 - youngest starbursts slight enhancement in CO(2-1)/CO(1-0) : ISM heating
- SFR intensity decreases with time
 - Consistent with Schmidt law
 - SF efficiency decreases with time

Dust content

No clear decline in dust mass fraction

- Matches CO results: Dust mass determined by gas mass
- Steady decline in dust temperature
 - Matches CO results: Dust T determined by SFR intensity

Dust content

Work-in-progress!!

No clear decline in dust mass fraction

- Matches CO results: Dust mass determined by gas mass
- Steady decline in dust temperature
 - Matches CO results: Dust T determined by SFR intensity

Gas consumption

Method:

- Stellar continuum + sample: time since starburst
- Dust attenuation corrected Hα : instantaneous SFR
- Follow-up IRAM + Herschel of subsample
- Results:
 - Nuclear star formation declines in 3 stages
 - Global gas and dust mass fraction remain constant
 - SFR intensity / dust temperature decline: follow Schmidt law

Conclusions

- No global gas expulsion episode
- Steady decline in SF efficiency = steady evolution of ISM

Starburst evolution: spectroscopic data

0.5 < z < 1.0 : VVDS

Wild, Walcher, Johansson et al. 2009

VVDS spectra are not great, but good enough....

Starburst evolution: spectroscopic data

0.5 < z < 1.0 : VVDS

z~0:SDSS

VVDS spectra are not great, but good enough....

Post-starburst galaxies: not just an interesting curiosity

Fraction of new red sequence mass accounted for by post-starburst galaxies at 0.5 < z < 1.0

(compared to Arnouts et al. 2007):

 $0.4 < \frac{\rho_{\text{B} \rightarrow \text{R},\text{PSB}}}{\dot{\rho}_{\text{B} \rightarrow \text{R}}} < 0.8$

Wild, Walcher, Johansson et al. 2009

Post-starburst galaxies: not just an interesting curiosity

Fraction of new red sequence mass accounted for by post-starburst galaxies at 0.5 < z < 1.0

(compared to Arnouts et al. 2007):

$$0.4 < \frac{\rho_{B \to R,PSB}}{\dot{\rho}_{B \to R}} < 0.8$$

Potentially a significant blue ⇒ red growth channel

- Also $S \Rightarrow E$ if we believe simulations
- •But only 5 (16) galaxies...
- PSBs are rare and spectroscopy is expensive

Wild, Walcher, Johansson et al. 2009

Post-starbursts from photometry?

Current state-of-the art: Whitaker et al. 2012

 Rest-frame 4000Å break strength vs. optical slope gives first order measure of age in old populations
Can we do better with modern statistical methods?

How to build a galaxy SED using PCA:

- Optimally defined linear combinations of filters
 - uses a Principal Component Analysis and sparse sampling (Connolly & Szalay 1999)
- Find that almost no information is lost by "sparse sampling"
 - So long as you have FULL, GOOD QUALITY optical-NIR coverage
- ◆ UKIDSS Ultra Deep Survey (P.I. Omar Almaini)

How to build a galaxy SED using PCA:

SED shape of 24,000 galaxies $0.9 < z_{phot} < 2.0$

- Optimally defined linear combinations of filters
 - uses a Principal Component Analysis and sparse sampling (Connolly & Szalay 1999)
- Find that almost no information is lost by "sparse sampling"
 - So long as you have FULL, GOOD QUALITY optical-NIR coverage
- + UKIDSS Ultra Deep Survey (P.I. Omar Almaini)

How to build a galaxy SED using PCA:

SED shape of 24,000 galaxies $0.9 < z_{phot} < 2.0$

- Optimally defined linear combinations of filters
 - uses a Principal Component Analysis and sparse sampling (Connolly & Szalay 1999)
- Find that almost no information is lost by "sparse sampling"
 - So long as you have FULL, GOOD QUALITY optical-NIR coverage
- + UKIDSS Ultra Deep Survey (P.I. Omar Almaini)

How to build a galaxy SED using PCA:

SED shape of 24,000 galaxies $0.9 < z_{phot} < 2.0$

- Optimally defined linear combinations of filters
 - uses a Principal Component Analysis and sparse sampling (Connolly & Szalay 1999)
- Find that almost no information is lost by "sparse sampling"
 - So long as you have FULL, GOOD QUALITY optical-NIR coverage
- ✦ UKIDSS Ultra Deep Survey (P.I. Omar Almaini)

Spectroscopic confirmation

Stacked spectra from different regions 752 UDSz spectra: 0.9 < z_{spec}< 2.0 2.0 Supercolour 2: 4000A or Balmer break red 1.5 $\sim \sim$ 20 1.0 0.5 **PSB** 10 Normalised Flux green 2.0 1.5 -10 3 SF -20 Supercolour 1: Blue vs. Red -40 80 SB 2800 3000 3200 3400 4000 3600 3800 4200 Rest wavelength./A

- SNR of most spectra too low to study recent SFH
- Stack based on position on super-colour diagrams

Number density evolution

- ◆ Far greater than decline in major merger rates ~(1+z)^{2.2} e.g. Xu+2012
- In principle: strong constraint on galaxy evolution models
 - Work-in-progress : significant work to make models match at all

Advertisement! DR1 release 1st November

Wild et al. in prep.

Advertisement! DR1 release 1st November

Advertisement! DR1 release 1st November

Van der Ven et al. in prep.

CALIFA Survey

Summary

- Currently favoured scenario: starbursts/gas-rich mergers do not significantly impact SFR density
 - Most SF occurs in "quiescent" mode
- But, wet-mergers are leading candidate for morphological transformation and shut off in SF
 - •40-80% of blue -> red mass flow at 0.5<z<2.0
 - compact, gas-rich merger remnant-like morphologies
- The rate of wet-mergers leading to massive RS galaxies declines very rapidly at z≤0.7
 - To first order, matches red sequence mass function evn.
 - Fewer very high gas fraction galaxies around to collide?
 - Morphologically defined merger rates not relevant here

Why are (post-)starburst galaxies interesting?

Build up of red sequence (Wild et al. 2009):

 Gas-rich major-merger + starburst could account for 40-80% of growth of red-sequence at z~0.7

Post-starburst - AGN connection (Wild et al. 2010):

- Enhanced AGN activity in all starbursts
- More enhanced in older starbursts
- Study ISM changes following starburst:
 - Gradual decline in SF efficiency as gas relaxes

Cluster galaxies die slowly (Von den Linden et al. 2010):

- Slow transition from star forming to quiescent galaxies
- No evidence for enhanced post-starburst population